Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Synth Syst Biotechnol ; 9(3): 577-585, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708056

RESUMEN

Strengthening the expression level of integrated genes on the genome is crucial for consistently expressing key enzymes in microbial cell factories for efficient bioproduction in synthetic biology. In comparison to plasmid-based multi-copy expression, the utilization of chromosomal multi-copy genes offers increased stability of expression level, diminishes the metabolic burden on host cells, and enhances overall genetic stability. In this study, we developed the "BacAmp", a stabilized gene integration expression and copy number amplification system for high-level expression in Bacillus subtilis, which was achieved by employing a combination of repressor and non-natural amino acids (ncAA)-dependent expression system to create a reversible switch to control the key gene recA for homologous recombination. When the reversible switch is turned on, genome editing and gene amplification can be achieved. Subsequently, the reversible switch was turned off therefore stabilizing the gene copy number. The stabilized gene amplification system marked by green fluorescent protein, achieved a 3-fold increase in gene expression by gene amplification and maintained the average gene copy number at 10 after 110 generations. When we implemented the gene amplification system for the regulation of N-acetylneuraminic acid (NeuAc) synthesis, the copy number of the critical gene increased to an average of 7.7, which yielded a 1.3-fold NeuAc titer. Our research provides a new avenue for gene expression in synthetic biology and can be applied in metabolic engineering in B. subtilis.

2.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567723

RESUMEN

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Asunto(s)
Bacillus subtilis , Sistemas CRISPR-Cas , Escherichia coli , Edición Génica , Mutagénesis , Escherichia coli/genética , Bacillus subtilis/genética , Edición Génica/métodos , Plásmidos/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Mutación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Aminohidrolasas
3.
J Agric Food Chem ; 72(15): 8693-8703, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574273

RESUMEN

Ovalbumin (OVA) is the principal protein constituent of eggs. As an alternative to eggs, cell-cultured OVA can reduce the environmental impact of global warming and land use. Escherichia coli Nissle 1917 (EcN), a probiotic with specific endogenous cryptic plasmids that stably exist in cells without the addition of antibiotics, was chosen as the host for the efficient heterologous expression of the OVA. OVA yield reached 20 mg·L-1 in shake flasks using the OVA expression cassette containing a tac promoter (Ptac) upstream of the OVA-coding sequences on the endogenous plasmid pMUT2. Subsequently, we improved the level of the expression of the OVA by employing a dual promoter (PP5 combined with Ptac via a sigma factor binding site 24) and ribosome binding site (RBS) substitution. These enhancements increased the level of production of OVA in shake flasks to 30 and 42 mg·L-1, respectively. OVA by EcNP-P28 harboring plasmid L28 equipped with both dual promoter and the strong RBS8 reached 3.70 g·L-1 in a 3 L bioreactor. Recombinant OVA and natural OVA showed similar biochemical characteristics, including secondary structure, isoelectric point, amino acid composition, and thermal stability. This is currently the highest OVA production reported among prokaryotes. We successfully constructed an antibiotic-free heterologous protein expression system for EcN.


Asunto(s)
Escherichia coli , Probióticos , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/metabolismo , Ovalbúmina/genética , Ovalbúmina/metabolismo , Plásmidos/genética
4.
J Agric Food Chem ; 72(17): 9974-9983, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625685

RESUMEN

5-Methyltetrahydrofolate (5-MTHF) is the sole active form of folate functioning in the human body and is widely used as a nutraceutical. Unlike the pollution from chemical synthesis, microbial synthesis enables green production of 5-MTHF. In this study, Escherichia coli BL21 (DE3) was selected as the host. Initially, by deleting 6-phosphofructokinase 1 and overexpressing glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, the glycolysis pathway flux decreased, while the pentose phosphate pathway flux enhanced. The ratios of NADH/NAD+ and NADPH/NADP+ increased, indicating elevated NAD(P)H supply. This led to more folate being reduced and the successful accumulation of 5-MTHF to 44.57 µg/L. Subsequently, formate dehydrogenases from Candida boidinii and Candida dubliniensis were expressed, which were capable of catalyzing the reaction of sodium formate oxidation for NAD(P)H regeneration. This further increased the NAD(P)H supply, leading to a rise in 5-MTHF production to 247.36 µg/L. Moreover, to maintain the balance between NADH and NADPH, pntAB and sthA, encoding transhydrogenase, were overexpressed. Finally, by overexpressing six key enzymes in the folate to 5-MTHF pathway and employing fed-batch cultivation in a 3 L fermenter, strain Z13 attained a peak 5-MTHF titer of 3009.03 µg/L, the highest level reported in E. coli so far. This research is a significant step toward industrial-scale microbial 5-MTHF production.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , NADP , Oxidación-Reducción , Tetrahidrofolatos , Tetrahidrofolatos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , NADP/metabolismo , Candida/metabolismo , Candida/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , NAD/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/genética
5.
Adv Sci (Weinh) ; : e2309852, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504470

RESUMEN

Biosynthesis is the application of enzymes in microbial cell factories and has emerged as a promising alternative to chemical synthesis. However, natural enzymes with limited catalytic performance often need to be engineered to meet specific needs through a time-consuming trial-and-error process. This study presents a quantum mechanics (QM)-incorporated design-build-test-learn (DBTL) framework to rationally design phosphatase BT4131, an enzyme with an ambiguous substrate spectrum involved in N-acetylglucosamine (GlcNAc) biosynthesis. First, mutant M1 (L129Q) is designed using force field-based methods, resulting in a 1.4-fold increase in substrate preference (kcat /Km ) toward GlcNAc-6-phosphate (GlcNAc6P). QM calculations indicate that the shift in substrate preference is caused by a 13.59 kcal mol-1 reduction in activation energy. Furthermore, an iterative computer-aided design is conducted to stabilize the transition state. As a result, mutant M4 (I49Q/L129Q/G172L) with a 9.5-fold increase in kcat-GlcNAc6P /Km-GlcNAc6P and a 59% decrease in kcat-Glc6P /Km-Glc6P is highly desirable compared to the wild type in the GlcNAc-producing chassis. The GlcNAc titer increases to 217.3 g L-1 with a yield of 0.597 g (g glucose)-1 in a 50-L bioreactor, representing the highest reported level. Collectively, this DBTL framework provides an easy yet fascinating approach to the rational design of enzymes for industrially viable biocatalysts.

6.
Synth Syst Biotechnol ; 9(1): 26-32, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38221910

RESUMEN

Lactoferricin, a multifunctional peptide located in the N-terminal region of lactoferrin, has a broad-spectrum bacteriostatic activity. It is a promising candidate as a food additive and immune fortification agent and does not have the risks associated with drug residues and drug resistance. First, we performed promoter and host cell screening to achieve the recombinant expression of lactoferricin in Pichia pastoris, showing an initial titer of 19.5 mg/L in P. pastoris X-33 using PAOX1 promoter. Second, we constructed a 0030-α hybrid signal peptide by fusing the 0030 signal peptide with the pro-sequence of α-factor secretory signal peptide. This further increased the production of lactoferricin, with a titer of 28.8 mg/L in the fermentation supernatant in the shaking flask. Next, we increased the expression of lactoferricin by fusing it with anionic antioxidant peptides. The neutralization of positive charges yielded a titer of 55.3 mg/L in the shaking flask, and a highest titer of 193.9 mg/L in a 3-L bioreactor. The antimicrobial activity analysis showed that recombinant-expressed lactoferricin exhibited potent antibacterial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. This study provides a reference for the construction of microbial cell factories capable of efficiently synthesizing antimicrobial peptides.

7.
Talanta ; 270: 125552, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38118324

RESUMEN

Triacylglycerols (TGs) are important components of human diet. The positional distribution of fatty acids (FAs) on the glycerol backbone affects the chemistry and physical properties of fats. Especially for infants, the structure of TGs plays an important role in the growth and development. However, limited by detecting technology, accurately identifying regioisomers of ABA/AAB and BAC/ABC/ACB type TGs is a significant challenge for human milk utilization and the development of infant formula. For this, we exploit a novel method for identifying the regioisomers of ABA/AAB and BAC/ABC/ACB type TGs within complex lipid mixtures, via used electron activated dissociation (EAD) tandem mass spectrometry. The distribution information of acyl chains at the sn-2 and sn-1/3 positions of glycerol backbone and double bonds in unsaturated FAs can be easily obtained by fragmenting TG ions with energetic electrons (15 eV). Then, the standard curve was established by correlating the peak area intensity of sn-2 characteristic product ion with the content of TG regioisomers standard. These analytical methods successfully enabled the identification and quantification of TG regioisomers in human milk, cow milk, infant formula, palm oil, and sunflower oil. Additionally, the distribution of the double-bond positions of unsaturated FAs in these samples was also identified. Compared to traditional methods, this approach eliminates the need for complex processing and analysis procedures, enabling rapid structural characterization of ABA/AAB and BAC/ABC/ACB type TGs within 17 min. Hence, we provide a rapid and convenient methodology for detecting and analyzing ABA/AAB and BAC/ABC/ACB type TG regioisomers, thereby offering valuable assistance in the development of specialized formulations and facilitating effective process control for ensuring the quality of edible oils and fats.


Asunto(s)
Electrones , Espectrometría de Masas en Tándem , Humanos , Triglicéridos/química , Glicerol , Aceites , Grasas
8.
J Agric Food Chem ; 71(43): 15926-15941, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856872

RESUMEN

To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.


Asunto(s)
Glicósidos , Edulcorantes , Azúcares , Ingeniería Metabólica
9.
ACS Synth Biol ; 12(11): 3328-3339, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37885173

RESUMEN

Bacillus subtilis is a generally recognized as safe microorganism that is widely used for protein expression and chemical production, but has a limited number of genetic regulatory components compared with the Gram-negative model microorganism Escherichia coli. In this study, a two-module plug-and-play T7-based optimized output strategy for transcription (T7-BOOST) systems with low leakage expression and a wide dynamic range was constructed based on the inducible promoters Phy-spank and PxylA. The first T7 RNA polymerase-driven module was seamlessly integrated into the genome based on the CRISPR/Cpf1 system, while the second expression control module was introduced into low, medium, and high copy plasmids for characterization. As a proof of concept, the T7-BOOST systems were successfully employed for whole-cell catalysis production of γ-aminobutyric acid (109.8 g/L with a 98.0% conversion rate), expression of human αS1 casein and human lactoferrin, and regulation of exogenous lycopene biosynthetic gene cluster and endogenous riboflavin biosynthetic gene cluster. Overall, the T7-BOOST system serves as a stringent, controllable, and effective tool for regulating gene expression in B. subtilis.


Asunto(s)
Bacillus subtilis , Regulación de la Expresión Génica , Humanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas/genética , Plásmidos , Familia de Multigenes/genética
10.
ACS Synth Biol ; 12(11): 3443-3453, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37881961

RESUMEN

The industrial yeast Komagataella phaffii is a highly effective platform for heterologous protein production, owing to its high protein expression and secretion capacity. Heterologous genes and proteins are involved in multiple processes, including transcription, translation, protein folding, modification, transportation, and degradation; however, engineering these proteins and genes is challenging due to inefficient genome editing techniques. We employed Pseudomonas aeruginosa phage single-stranded DNA-annealing protein (SSAP) PapRecT and P. aeruginosa single-stranded DNA-binding protein (SSB) PaSSB to introduce SSAP-SSB-based homology recombination, which facilitated K. phaffii CRISPR-based genome engineering. Specifically, a host-independent method was developed by expressing sgRNA with PapRecT-PaSSB in a single plasmid, with which only a 50 bp short homologous arm (HA) reached a 100% positive rate for CRISPR-based gene insertion, reaching 18 colony-forming units (CFU) per µg of donor DNA. Single deletion using 1000 bp HA attained 100%, reaching 68 CFUs per µg of donor DNA. Using this efficient CRISPR-based genome editing tool, we integrated three genes (INO4, GAL4-like, and PAB1) at three different loci for overexpression to realize the collaborative regulation of human-lactalbumin (α-LA) production. Specifically, we strengthened phospholipid biosynthesis to facilitate endoplasmic reticulum membrane formation and enhanced recombinant protein transcription and translation by overexpressing transcription and translation factors. The final production of α-LA in the 3 L fermentation reached 113.4 mg L-1, two times higher than that of the strain without multiple site gene editing, which is the highest reported titer in K. phaffii. The CRISPR-based genome editing method developed in this study is suitable for the synergistic multiple-site engineering of protein and biochemical biosynthesis pathways to improve the biomanufacturing efficiency.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Proteínas Portadoras/genética , ARN Guía de Sistemas CRISPR-Cas
11.
Microb Cell Fact ; 22(1): 180, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700284

RESUMEN

BACKGROUND: Saccharomyces cerevisiae has been used in the biosynthesis of acid products such as organic acids owing to its acid tolerance. Improving the acid tolerance of S. cerevisiae is beneficial for expanding its application range. Our previous study isolated the TAMC strain that was tolerant to a pH 2.3 through adaptive laboratory evolution; however, its mechanism underlying tolerance to low pH environment remains unclear. RESULTS: In this study, through visual observation and order analysis of plasma membrane and membrane microdomains, we revealed that the membrane microdomains of TAMC strain play an indispensable role in acid tolerance. Transcriptomic analysis showed an increase in the expression of genes related to key components of membrane microdomains in TAMC strain. Furthermore, an obvious reduction was observed in the acid tolerance of the strain with sterol C-24 methyltransferase encoding gene ERG6 knockout for inhibiting membrane microdomain formation. Finally, colocalization analysis of H+-ATPase PMA1 and plasma membrane protein PMP1 showed that disruption of membrane microdomains could inhibit the formation of the H+-ATPase complex. CONCLUSIONS: Membrane microdomains could provide a platform for forming H+-ATPase complexes to facilitate intracellular H+ homeostasis, and thereby improve cell acid resistance. This study proposed a novel acid tolerance mechanism, providing a new direction for the rational engineering of acid-tolerant strains.


Asunto(s)
Perfilación de la Expresión Génica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Membrana Celular , Técnicas de Inactivación de Genes , Microdominios de Membrana
12.
Biotechnol Adv ; 69: 108261, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741424

RESUMEN

Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Alimentos
13.
Nat Chem Biol ; 19(12): 1504-1512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37443393

RESUMEN

Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Saccharomyces cerevisiae , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/metabolismo , Plásmidos/genética , Saccharomyces cerevisiae/genética , Replicación del ADN , Bacterias/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
14.
Int J Biol Macromol ; 244: 125335, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37315667

RESUMEN

The increasing global population and protein demand cause global challenges for food supply. Fueled by significant developments in synthetic biology, microbial cell factories are constructed for the bioproduction of milk proteins, providing a promising approach for scalable and cost-effective production of alternative proteins. This review focused on the synthetic biology-based microbial cell factory construction for milk protein bioproduction. The composition, content, and functions of major milk proteins were first summarized, especially for caseins, α-lactalbumin, and ß-lactoglobulin. An economic analysis was performed to determine whether cell factory-based milk protein production is economically viable for industrial production. Cell factory-based milk protein production is proved to be economically viable for industrial production. However, there still exist some challenges for cell factory-based milk protein biomanufacturing and application, including the inefficient production of milk proteins, insufficient investigation of protein functional property, and insufficient food safety evaluation. Constructing new high-efficiency genetic regulatory elements and genome editing tools, coexpression/overexpression of chaperone genes, and engineering protein secretion pathways and establishing a cost-effective protein purification method are possible ways to improve the production efficiency. Milk protein biomanufacturing is one of the promising approaches to acquiring alternative proteins in the future, which is of great importance for supporting cellular agriculture.


Asunto(s)
Edición Génica , Proteínas de la Leche , Proteínas de la Leche/genética , Caseínas , Ingeniería de Proteínas , Lactalbúmina/genética , Ingeniería Metabólica
15.
J Fungi (Basel) ; 9(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233223

RESUMEN

Retinol, the main active form of vitamin A, plays a role in maintaining vision, immune function, growth, and development. It also inhibits tumor growth and alleviates anemia. Here, we developed a Saccharomyces cerevisiae strain capable of high retinol production. Firstly, the de novo synthesis pathway of retinol was constructed in S. cerevisiae to realize the production of retinol. Second, through modular optimization of the metabolic network of retinol, the retinol titer was increased from 3.6 to 153.6 mg/L. Then, we used transporter engineering to regulate and promote the accumulation of the intracellular precursor retinal to improve retinol production. Subsequently, we screened and semi-rationally designed the key enzyme retinol dehydrogenase to further increase the retinol titer to 387.4 mg/L. Lastly, we performed two-phase extraction fermentation using olive oil to obtain a final shaking flask retinol titer of 1.2 g/L, the highest titer reported at the shake flask level. This study laid the foundation for the industrial production of retinol.

16.
J Agric Food Chem ; 71(20): 7752-7764, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37189018

RESUMEN

Limonene is a volatile monoterpene compound that is widely used in food additives, pharmaceutical products, fragrances, and toiletries. We herein attempted to perform efficient biosynthesis of limonene in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, we conducted de novo synthesis of limonene in S. cerevisiae and achieved a titer of 46.96 mg/L. Next, by dynamic inhibition of the competitive bypass of key metabolic branches regulated by ERG20 and optimization of the copy number of tLimS, a greater proportion of the metabolic flow was directed toward limonene synthesis, achieving a titer of 640.87 mg/L. Subsequently, we enhanced the acetyl-CoA and NADPH supply, which increased the limonene titer to 1097.43 mg/L. Then, we reconstructed the limonene synthesis pathway in the mitochondria. Dual regulation of cytoplasmic and mitochondrial metabolism further increased the limonene titer to 1586 mg/L. After optimization of the process of fed-batch fermentation, the limonene titer reached 2.63 g/L, the highest ever reported in S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Limoneno/metabolismo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación
17.
Microorganisms ; 11(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37110349

RESUMEN

The green and sustainable production of chemicals, materials, fuels, food, and pharmaceuticals has become a key solution to the global energy and environmental crisis [...].

18.
ACS Synth Biol ; 12(4): 1275-1286, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37027231

RESUMEN

l-Histidine is an essential proteinogenic amino acid in food with extensive applications in the pharmaceutical field. Herein, we constructed a Corynebacterium glutamicum recombinant strain for efficient biosynthesis of l-histidine. First, to alleviate the l-histidine feedback inhibition, the ATP phosphoribosyltransferase mutant HisGT235P-Y56M was constructed based on molecular docking and high-throughput screening, resulting in the accumulation of 0.83 g/L of l-histidine. Next, we overexpressed rate-limiting enzymes including HisGT235P-Y56M and PRPP synthetase and knocked out the pgi gene in the competing pathway, which increased the l-histidine production to 1.21 g/L. Furthermore, the energy status was optimized by decreasing the reactive oxygen species level and enhancing the supply of adenosine triphosphate, reaching a titer of 3.10 g/L in a shake flask. The final recombinant strain produced 5.07 g/L of l-histidine in a 3 L bioreactor, without the addition of antibiotics and chemical inducers. Overall, this study developed an efficient cell factory for l-histidine biosynthesis by combinatorial protein engineering and metabolic engineering.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ingeniería de Proteínas/métodos , Ingeniería Metabólica/métodos , Histidina/biosíntesis , Simulación por Computador , Biocatálisis , Mutación , Reactores Biológicos
19.
Bioresour Technol ; 379: 129023, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37028528

RESUMEN

L-lactic acid (L-LA) is widely used in the food, pharmaceutical, and cosmetic industries. In recent years, the production of L-LA using microbial fermentation has been favored. Herein, a Saccharomyces cerevisiae TAM strain tolerant to pH 2.4, was used as the starting strain. Exogenous L-lactate dehydrogenase expressing S. cerevisiae TAM strain with downregulated glycerol and ethanol synthesis pathways produced an L-LA titer of 29.8 g/L, and it increased to 50.5 g/L after carboxylic acid transport pathway modulation at the shake-flask level. Subsequently, increased energy supply and redox balancing increased the L-LA titer to 72.7 g/L in shake-flask fermentation without a neutralizer, with the yield of 0.66 g/g. Finally, optimization of the fermentation conditions, such as the seed quantity, oxygen level, and pH in a 15-L bioreactor, increased the L-LA titer to 192.3 g/L at pH 4.5, with a yield of 0.78 g/g. Overall, this study proposes an efficient L-LA bioproduction method.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Fermentación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Láctico
20.
ACS Synth Biol ; 12(4): 1146-1153, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37014059

RESUMEN

The metabolic burden caused by terpenoid accumulation limits the development of highly efficient microbial cell factories, which can be circumvented using exporter-mediated product secretion. Although our previous study showed that the pleiotropic drug resistance exporter (PDR11) mediates the export of rubusoside in Saccharomyces cerevisiae, the underlying mechanism is still unclear. Herein, we used GROMACS software to simulate PDR11-mediated rubusoside recruitment and found six residues (D116, D167, Y168, P521, R663, and L1146) on PDR11 that are critical for this process. We also explored the exportation potential of PDR11 for 39 terpenoids by calculating their binding affinity using batch molecular docking. Then, we verified the accuracy of the predicted results by conducting experiments with squalene, lycopene, and ß-carotene as examples. We found that PDR11 can efficiently secrete terpenoids with binding affinities lower than -9.0 kcal/mol. Combining the computer-based prediction and experimental verification, we proved that binding affinity is a reliable parameter to screen exporter substrates and might potentially enable rapid screening of exporters for natural products in microbial cell factories.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Terpenos/metabolismo , Simulación del Acoplamiento Molecular , Adenosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...